파이(pi)와 자연상수 e에 대하여, 오일러 공식과 함께 알아보기
수학자들 사이에서 유명한 오일러 공식(Euler's formula)은 아래와 같다.
그리고 여기 x에 파이(pi)를 할당해 계산하면 아래와 같은 항등식으로 바뀌게 되고, 많은 수학자들이 놀라워했듯이 수학에서 가장 유명한 두 상수가 이렇게 만나 간결하게 정리된다.
이에 대한 세부 내용은 아래 위키에서 확인할 수 있다. https://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC_%EA%B3%B5%EC%8B%9D
다만, 여기서 같이 살펴볼 것은 이 두 무리수 파이와 자연상수 e에 대한 내용이다. 과연 이것이 무엇일까?
첫번째로 파이(pi)는 잘 알려져 있다시피 반지름과 원의 둘레 사이의 비율을 정의하는 상수이다. 즉, 간단히 설명해보면 직선에서 곡선으로 변환되는 비례관계를 표현한다. 더 쉽게는, 파이는 늘 곡선과 연관되어 있다고 말할 수 있다. 따라서 대부분의 곡선을 다루는 방정식들은 이 파이를 만나게 된다. 당신에게 곡선을 나타낼 도구가 필요한가? 그러면 곧바로 파이와 맞닿게 되어 있다.
sin과 cos을 다룰때도 파이가 등장하는 이유는 그 두 그래프를 보면 명확하다. 그 그래프 값들은 곡선이며 그렇게 파이와 직결된다. 삼각형의 비율로 묘사되는 이 삼각함수들은, 사실은 원 궤도를 움직이는 2차원 평면상의 좌표로도 나타낼 수 있기도 하고 삼각함수는 파이와 절친한 친구이다.
그래서 파이는 이렇게 곡선을 묘사한다고 이야기해도 틀린 말이 아니다.
그러면 두번째로 자연 상수e(=2.718..)란 어떤 존재인가? 여러가지 정의로 나타낼 수 있지만, 가장 이해하기 쉬운 정의는 다음과 같다.
f(x)=e^x (e의 x제곱) 라는 지수 함수가 있을때, 이 함수를 미분해도 다시 그 자신이 되는 e값이다.
즉, d(e^x)/dx = e^x가 되는 e값이다.
조금더 풀어서 이야기하면 x에서의 함수값 f(x)와 그 접선의 기울기 값 f'(x)가 같다. 즉 해당 점에서의 변화율이 그 함수의 값과 같다. 함수값이 커질때 변화율이 그 함수값보다 작아지는가 커지는가로 나누는 경계가 된다. 자연상수 e값으로 지수함수를 구성할때는 이 값이 같다.
그러면 왜 이 값이 의미가 있을까? 이자율이나 여러가지 지수관계를 다룰때, 이 값은 마치 대칭의 중앙값 같은 역할을 하게 되기 때문에 계산이 쉬워지게 만드는 역할을 할 수 있다. 10을 밑으로 하는 log는 그저 편의상 만들어진 10개인 인간의 손가락 수에 의존하는 숫자이지만, ln은 이러한 수학의 변화율에 대한 법칙이 만들어낸 어떤 특정한 값이다. 따라서 지수함수와 대칭점에 있는 로그함수를 다룰 때 아예 자연상수 e를 사용한 로그 ln을 상정함으로 인해 계산 결과를 더욱 깔끔하게 정리할 수 있다. 새로운 비율의 숫자로 수학을 구성했을때 더 간결하게 나타낼 수 있는 셈이다.
다시 풀어쓰면, 지수함수에 대해서, e보다 작은 값에 대해서는 이제 변화율이 그 함수값보다 작고, e보다 큰 값에 대해서는 그 변화율이 그 함수값보다 커지게 되면서, 이 두 세계를 나누는 경계가 된다. 윗 세상과 아랫 세상을 나누는 무언가가 된다. 즉 지수 관계에서 특정한 대칭을 이루는 한 지점으로 된다.
사실은 그래서 개인적으로 자연상수 e가 곡선을 다루는 파이보다 더 의미있어 보인다. 자연상수 e는 무리수에서나 찾을 수 밖에 없는, 늘어나고 줄어드는 사이의 가운데 중간값이기 때문이다. 마치 정수에서 음수와 양수를 0으로 나누듯이, 지수함수의 변화를 그 미분값보다 더 크게하고 작고하고의 대칭 중간점을 자연상수 e가 정의하고 있기 때문이다.
그리고 참고로 허수에 대해서는 따로 설명하지 않겠지만, 신기하게도 복소 평면에서의 허수 i는 회전으로 묘사될 수 있다.
그리고 이에 더해 앞서 밝힌 관계들은 이렇게 다시 돌아가보면, 복소 평면에서 아래와 같은 관계를 지니게 되는 것이다.
그리고 이 x가 pi만큼 회전했을때는, 위 공식의 양변이 모두 -1이라는 값으로 가게되며, 결국 아래 값을 만족하게 된다.
이 두 상관없어 보이는 지수함수의 증가의 기준과 곡선을 다루는 두 무리수 상수가 이렇게 딱 떨어지며 관계를 이루고 있는 셈이다. 그리고 정리해보자면 e는 변화율에 대한 대칭의 지점이며 pi는 이 회전에서의 어딘가 곡선값을 처리한다고 간략히 묘사해볼 수 있겠다.