머신러닝AI2023. 9. 8. 22:20

다양한 사람들의 노력으로 Apple Sillicon (M1/M2, gpu 사용) 에서도 아래와 같이 구동할 수 있다. 그리고 표기했듯이 apple sillicon의 GPU inference를 사용할 수 있기 때문에 속도도 나쁘지 않다. 다만 단지 구동만 가능한 것을 확인했고, 이를 통해 학습을 할 수 있는것 같지는 않다. 그래도 돌려볼 수 있다는 것이 어딘가!

 

https://gist.github.com/gengwg/26592c1979a0bca8b65e2f819e31ab5c

 

아래와 같이 우선 llama.cpp를 git clone하자.

 

$ git clone https://github.com/ggerganov/llama.cpp.git
$ cd llama.cpp

 

아래와 같은 옵션으로 gpu inference를 활성화하여 컴파일 할 수 있다.


$ make clean
$ LLAMA_METAL=1 make

 

이제 메모리가 크지 않은 맥북들을 위해 각 메모리 크기에 맞는 모델을 다운받아 구동해보자.

만약에 메모리 10gb이상 맥북이면, 13b모델을 최적화 축소한 아래 모델을 시도해보자. 물론 이 모델을 적재할 메모리가 충분하다면 아래 huggingface.co/TheBloke의 다른 더 큰 모델을 참조할 수 있다. 64gb모델 맥북이나 맥스튜디오 장비를 가지고 있다면 40gb짜리 quantized된 70b모델을 돌릴 수도 있다.

 

일단 13b모델은 아래와 걑이 한다.


$ export MODEL=llama-2-13b-chat.Q4_0.gguf 

#wget이 설치되어 있다면 아래와 같이, 혹은 아래 URL로 직접 링크를 다운로드

$ wget "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q4_0.gguf 

 

메모리 8gb이하 맥북이라면 아래 모델을 받는다.

$ export MODEL=llama-2-7b-chat.Q4_0.gguf 

$ wget "https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF/resolve/main/llama-2-7b-chat.Q4_0.gguf 

 

그리고 나서 이제 아래와 같이 실행한다. 아래는 7b모델이다. 다운받은 모델에 따라 모델명을 바꿔주자.

 

$ ./main -m ./llama-2-7b-chat.Q4_0.gguf -t 8 -n 128 -ngl 1 --prompt "could you generate python code for generating prime numbers?"

 

.... 정말 코드를 생성해준다!

 

기타 아래를 통해 conda를 써서 llama.cpp의 python 필요시 따로 구동할 수 있다.

$ conda create --name=llama2 python=3.11

$ conda activate llama2

$ pip install -r requirements.txt

 

간단하게 맥북(m1/m2이지만 다른 macos환경에서도 가능하리라고 본다) 에서 llama.cpp를 이용해  llama를 구동해보았다.

반응형
Posted by 작동미학