소수(prime number)란 무엇인가?
암호화폐와 양자컴퓨터의 등장으로 RSA 비대칭 암호화 방식이 점점더 주목을 받기 시작했다. 그리고 이 안에 숨어있는 것이 소수이다. 그리고 수학의 정수론에서 이 소수는 늘 나타난다. 왜일까?
최근에 깨달은 것은 이 소수는 기계적으로 처리하기 어려운 예측 불가한 수라는 사실이다. 무언가 반복해서 쉽게 알아내기 어렵다. 수는 대칭적인 속성이 중요하다는 얘기를 전부터 자주해왔는데, 소수는 특이하게도 1과 자기 자신 외에는 나눠지지 않는다. 즉 여러가지 계산에 있어서 원자처럼 작동한다. 1을 여러번 더하면 되잖아요! 라고 할 수 있는데 그게 다다. 1을 반복하는 것 외에는 저 수에 도달할 방법이 없다. 그냥 뻥하고 태어난다. 2,3,5,7,11,13,17,.. 들이 그렇다.
무한히 존재하는 수를 기계적으로 매끄럽게 압축해서 표현하는 여러가지 방법이 있는데, 괴델의 불완전성의 정리에도 나오는 대로 이 세상의 모든 수는 각각 소수의 연속된 무슨 제곱의 곱으로 나타낼 수 있다. 2^a * 3^b * 5^c * ... 이러면 꽤 큰 수들을 나름 아주 압축해서 나타낼 수 있다. 예를 들면 이런걸 소수 진법이라고 칭하면 저 위의 abcde..만 모아서도 수 체계를 만들 수 있다. 그렇게 소수는 이 숫자들의 최소 구성요소로 간단하게 말할 수 있고, 더이상 압축할 수 없는 말단이다. 그런데 이렇게 정의하는 데는 이 소수의 목록이 필요한데, 그걸 그냥 테이블로 저장하는 방법 외에는 더 축소해서 나타낼 방법이 없다. 이렇게 기계로 줄이는데 여하튼 더이상 방법이 없는 수들이다.
만약에 소수에 규칙이 존재한다면 더 압축할 수 있겠다. 그것은 수의 원자를 새로 선언하는 일이 된다. 아직은 벌어지지 않는다. 정수론을 이것저것 증명하다가 소수가 발견되면 거기가 끝이다. 더이상의 정리는 불가능해진다. 거기가 쪼개질 수 있는 한계이다.
그리고 그런 성질들이 현대의 비대칭 암호화 큰 축을 지탱하고 있다.
'순수수학' 카테고리의 다른 글
소수(prime number)는 왜 불규칙하고 결정되지 못한가? 2 (0) | 2021.08.07 |
---|---|
collatz conjecture(콜라츠의 추측)에 대하여 (0) | 2021.08.07 |
칸토어, 무한과 기계적 구현의 연계에 대해서 (0) | 2021.03.08 |
랜덤의 정도(Degree of Randomness)에 대하여 (0) | 2020.07.29 |
대칭과 일반화 2, 다차원상에서의 대칭 (0) | 2020.06.20 |